A Multiplicative Bias Corrected Nonparametric Estimator for a Finite Population Mean
نویسندگان
چکیده
منابع مشابه
Bias Adjustment for a Nonparametric Entropy Estimator
Zhang in 2012 introduced a nonparametric estimator of Shannon’s entropy, whose bias decays exponentially fast when the alphabet is finite. We propose a methodology to estimate the bias of this estimator. We then use it to construct a new estimator of entropy. Simulation results suggest that this bias adjusted estimator has a significantly lower bias than many other commonly used estimators. We ...
متن کاملA nonparametric Bayesian prediction interval for a finite population mean
Given a sample from a finite population, we provide a nonparametric Bayesian prediction interval for a finite population mean when a standard normal assumption may be tenuous. We will do so using a Dirichlet process (DP), a nonparametric Bayesian procedure which is currently receiving much attention. An asymptotic Bayesian prediction interval is well known but it does not incorporate all the fe...
متن کاملA New Exponential Type Estimator for the Population Mean in Simple Random Sampling
In this paper, a new estimate of exponential type of auxiliary information to help simple random sampling without replacement of the finite population mean is introduced. This new estimator with a few other estimates using two real data sets are compared with the mean square error.
متن کاملGeneralized Modified Ratio Estimator for Estimation of Finite Population Mean
A generalized modified ratio estimator is proposed for estimating the population mean using the known population parameters. It is shown that the simple random sampling without replacement sample mean, the usual ratio estimator, the linear regression estimator and all the existing modified ratio estimators are the particular cases of the proposed estimator. The bias and the mean squared error o...
متن کاملOn Presentation a new Estimator for Estimating of Population Mean in the Presence of Measurement error and non-Response
Introduction According to the classic sampling theory, errors that are mainly considered in the estimations are sampling errors. However, most non-sampling errors are more effective than sampling errors in properties of estimators. This has been confirmed by researchers over the past two decades, especially in relation to non-response errors that are one of the most fundamental non-immolation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Theoretical and Applied Statistics
سال: 2016
ISSN: 2326-8999
DOI: 10.11648/j.ajtas.20160505.21